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The Fourier Transform on L
1
(ℝ)

ℱ(f)(!) = f̂(!) :=

∫
ℝ
f(x)e−2�i!x dx (1)

ℱ−1(g)(x) = ǧ(x) :=

∫
ℝ
g(!)e2�i!x d! (2)

These are valid wherever the integrals are defined, for example if
f ∈ L1(ℝ)
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C0(ℝ) and S

Definition
C0(ℝ) is the set of continuous functions with a horizontal
asymptote at f = 0 as ∣x∣ → ∞

Definition
The Schwartz Space S is defined as the space of C∞ functions on
ℝ which, along with all of their derivatives, decay faster than any
rational function.

Theorems

S d
↪→ L1(ℝ); C0(ℝ) ⊂ L∞(ℝ); ℱ : S → S is an isomorphism.
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The Riemann-Lebesgue Lemma

Theorem
f ∈ L1(ℝ) ⇒ f̂ ∈ C0(ℝ)

The integral can be expected to be vanishingly small as the
frequency increases without bound
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Proof of RLL (after Nachtergaele)

Proof
By density, choose (gn) from S converging to f in L1(ℝ); then
(ĝn) is (uniformly) Cauchy:

∣ĝn(!)− ĝm(!)∣ =
∣∣∣∣∫

ℝ
(gn(x)− gm(x))e−2�i!x dx

∣∣∣∣
≤
∫
ℝ
∣gn(x)− gm(x))∣ dx

= ∥gn − gm∥1

Since S ⊂ C0(ℝ) which is complete under the sup norm, there
exists a function ℎ ∈ C0(ℝ) to which (ĝn) converges uniformly
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Proof (Cont’d)

Finally, ℎ = f̂ since ∀ ! ∈ ℝ,∣∣∣ℎ(!)− f̂(!)
∣∣∣ = lim

n→∞

∣∣∣ĝn(!)− f̂(!)
∣∣∣

= lim
n→∞

∣∣∣∣∫
ℝ

(gn(x)− f(x))e−2�i!x dx

∣∣∣∣
≤ lim

n→∞

∫
ℝ
∣gn(x)− f(x)∣ dx = 0
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The Fourier Transform on L
2
(ℝ)

For f ∈ L2(ℝ), we cannot in general define f̂ by Equation (1).

Theorem
(Plancheral’s Theorem) f ∈ L2(ℝ) ⇒ ∥f̂∥2 = ∥f∥2.

Now (L1 ∩ L2)(ℝ)
d
↪→ L2(ℝ), so we can choose a sequence (fn) in

(L1 ∩ L2)(ℝ) which converges to f in the 2-norm
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The Fourier Transform on L
2
(ℝ)

By Plancheral’s Theorem, ∥fn − fm∥2 = ∥f̂n − f̂m∥2, so (f̂n) is
Cauchy in L2(ℝ), hence converges.

We now define f̂ := lim
n→∞

f̂n.

The inverse Fourier transform ℱ−1 is then defined as the Hilbert
space adjoint ℱ∗ of ℱ (but not necessarily as a pointwise formula)
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Fourier Inversion

First note that (by RLL) f ∈ L1(ℝ) ⇒ f̌ ∈ C0(ℝ)

Theorem

If f, f̂ ∈ L1(ℝ), then f(x) =

∫
ℝ
f̂(!)e2�i!x d!

So if f, f̂ ∈ L1(ℝ), then f, f̂ ∈ C0(ℝ)



The Fourier Transform, L2(ℝ), and the Riemann-Lebesgue Lemma

Useful Sufficient Conditions for (ℱ−1 ∘ ℱ)(f) = f

In this case we have f, f̂ ∈ L1(ℝ) ∩ C0(ℝ), and splitting ℝ into
complementary sets for which f (resp.f̂) ≥ 1 or f < 1 yields that

f, f̂ ∈ L1(ℝ) ⇒ f, f̂ ∈
(
L2 ∩ C0

)
(ℝ) ⇒ f, f̂ ∈ L1(ℝ)

So on a significant subset of L2(ℝ), ℱ−1 ∘ ℱ = ℐ

This set includes e−x
2
, sinc2(x), which are formulaic, and many

others which are not
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The Chernoff-Fourier Convergence Theorem

(From Amer. Math Monthly (1980), 399-400)

Theorem
Let f be absolutely integrable on an interval I and suppose f is
Lipschitz on I with constant A. Then the (asymmetric) partial sums

Sm,n(x0) :=

n∑
k=−m

f̂(k)e
2�ikx
ℓ(I)

converge to f(x0) as m,n → +∞.
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Proof of Pointwise Fourier Series Convergence

Proof
WLOG we can suppose that I =

[
−1

2 ,
1
2

]
, that x0 = 0, and that

f(0) = 0. Consider the auxiliary function g(x) := f(x)
e2�ix−1 and note

∣∣∣∣ f(x)

e2�ix − 1

∣∣∣∣ =

∣∣∣∣f(x)

x

x

e2�ix − 1

∣∣∣∣ ≤ A ⋅
∣∣∣∣ x

e2�ix − 1

∣∣∣∣
Also,

∣∣∣∣e2�ix − 1

x

∣∣∣∣ ≥ 4 ⇒
∣∣∣∣ x

e2�ix − 1

∣∣∣∣ ≤ 1

4
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Proof of Pointwise Fourier Series Convergence

Proof (Cont’d)

Now note that f̂(k) = ℱ(g ⋅ (e2�ix − 1))(k) = ĝ(k − 1)− ĝ(k)
which expresses f̂ , so

Sm,n(0) =

n∑
k=−m

f̂(k)e2�ik(0) = ĝ(−m− 1)− ĝ(n) (3)

which converges to 0− 0 = 0 = f(0) by the Riemann-Lebesgue
Lemma applied to g.
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