# The Fourier Transform, $L^{2}(\mathbb{R})$, and the Riemann-Lebesgue Lemma 

## Scott Beaver - Western Oregon University

Pacific Northwest Section Meeting of the MAA

Saturday, April 10, 2010

## The Fourier Transform on $L^{1}(\mathbb{R})$

$$
\begin{align*}
\mathcal{F}(f)(\omega) & =\hat{f}(\omega) \tag{1}
\end{align*}:=\int_{\mathbb{R}} f(x) e^{-2 \pi i \omega x} d x
$$

These are valid wherever the integrals are defined, for example if $f \in L^{1}(\mathbb{R})$

## $C_{0}(\mathbb{R})$ and $\mathcal{S}$

## Definition

$C_{0}(\mathbb{R})$ is the set of continuous functions with a horizontal asymptote at $f=0$ as $|x| \rightarrow \infty$

## Definition

The Schwartz Space $\mathcal{S}$ is defined as the space of $C^{\infty}$ functions on $\mathbb{R}$ which, along with all of their derivatives, decay faster than any rational function.

## Theorems

$\mathcal{S} \stackrel{d}{\hookrightarrow} L^{1}(\mathbb{R}) ; C_{0}(\mathbb{R}) \subset L^{\infty}(\mathbb{R}) ; \mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$ is an isomorphism.

## The Riemann-Lebesgue Lemma

## Theorem <br> $f \in L^{1}(\mathbb{R}) \Rightarrow \hat{f} \in C_{0}(\mathbb{R})$



The integral can be expected to be vanishingly small as the frequency increases without bound

## Proof of RLL (after Nachtergaele)

## Proof

By density, choose $\left(g_{n}\right)$ from $\mathcal{S}$ converging to $f$ in $L^{1}(\mathbb{R})$; then $\left(\hat{g}_{n}\right)$ is (uniformly) Cauchy:

$$
\begin{aligned}
\left|\hat{g}_{n}(\omega)-\hat{g}_{m}(\omega)\right| & =\left|\int_{\mathbb{R}}\left(g_{n}(x)-g_{m}(x)\right) e^{-2 \pi i \omega x} d x\right| \\
& \left.\leq \int_{\mathbb{R}} \mid g_{n}(x)-g_{m}(x)\right) \mid d x \\
& =\left\|g_{n}-g_{m}\right\|_{1}
\end{aligned}
$$

Since $\mathcal{S} \subset C_{0}(\mathbb{R})$ which is complete under the sup norm, there exists a function $h \in C_{0}(\mathbb{R})$ to which $\left(\hat{g}_{n}\right)$ converges uniformly

## Proof (Cont'd)

Finally, $h=\hat{f}$ since $\forall \omega \in \mathbb{R}$,

$$
\begin{aligned}
|h(\omega)-\hat{f}(\omega)| & =\lim _{n \rightarrow \infty}\left|\hat{g}_{n}(\omega)-\hat{f}(\omega)\right| \\
& =\lim _{n \rightarrow \infty}\left|\int_{\mathbb{R}}\left(g_{n}(x)-f(x)\right) e^{-2 \pi i \omega x} d x\right| \\
& \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}}\left|g_{n}(x)-f(x)\right| d x=0
\end{aligned}
$$

## The Fourier Transform on $L^{2}(\mathbb{R})$

For $f \in L^{2}(\mathbb{R})$, we cannot in general define $\hat{f}$ by Equation (1).

Theorem
(Plancheral's Theorem) $f \in L^{2}(\mathbb{R}) \Rightarrow\|\hat{f}\|_{2}=\|f\|_{2}$.

Now $\left(L^{1} \cap L^{2}\right)(\mathbb{R}) \stackrel{d}{\hookrightarrow} L^{2}(\mathbb{R})$, so we can choose a sequence $\left(f_{n}\right)$ in $\left(L^{1} \cap L^{2}\right)(\mathbb{R})$ which converges to $f$ in the 2-norm

## The Fourier Transform on $L^{2}(\mathbb{R})$

By Plancheral's Theorem, $\left\|f_{n}-f_{m}\right\|_{2}=\left\|\hat{f}_{n}-\hat{f}_{m}\right\|_{2}$, so $\left(\hat{f}_{n}\right)$ is Cauchy in $L^{2}(\mathbb{R})$, hence converges.

We now define $\hat{f}:=\lim _{n \rightarrow \infty} \hat{f}_{n}$.

The inverse Fourier transform $\mathcal{F}^{-1}$ is then defined as the Hilbert space adjoint $\mathcal{F}^{*}$ of $\mathcal{F}$ (but not necessarily as a pointwise formula)

## Fourier Inversion

First note that (by RLL) $f \in L^{1}(\mathbb{R}) \Rightarrow \check{f} \in C_{0}(\mathbb{R})$

## Theorem <br> If $f, \hat{f} \in L^{1}(\mathbb{R})$, then $f(x)=\int_{\mathbb{R}} \hat{f}(\omega) e^{2 \pi i \omega x} d \omega$

So if $f, \hat{f} \in L^{1}(\mathbb{R})$, then $f, \hat{f} \in C_{0}(\mathbb{R})$

## Useful Sufficient Conditions for $\left(\mathcal{F}^{-1} \circ \mathcal{F}\right)(f)=f$

In this case we have $f, \hat{f} \in L^{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$, and splitting $\mathbb{R}$ into complementary sets for which $f$ (resp. $\hat{f}$ ) $\geq 1$ or $f<1$ yields that $f, \hat{f} \in L^{1}(\mathbb{R}) \Rightarrow f, \hat{f} \in\left(L^{2} \cap C_{0}\right)(\mathbb{R}) \Rightarrow f, \hat{f} \in L^{1}(\mathbb{R})$

So on a significant subset of $L^{2}(\mathbb{R}), \mathcal{F}^{-1} \circ \mathcal{F}=\mathcal{I}$
This set includes $e^{-x^{2}}, \operatorname{sinc}^{2}(x)$, which are formulaic, and many others which are not

## The Chernoff-Fourier Convergence Theorem

(From Amer. Math Monthly (1980), 399-400)

## Theorem

Let $f$ be absolutely integrable on an interval $I$ and suppose $f$ is Lipschitz on I with constant A. Then the (asymmetric) partial sums

$$
S_{m, n}\left(x_{0}\right):=\sum_{k=-m}^{n} \hat{f}(k) e^{\frac{2 \pi i k x}{\ell(I)}}
$$

converge to $f\left(x_{0}\right)$ as $m, n \rightarrow+\infty$.

## Proof of Pointwise Fourier Series Convergence

## Proof

WLOG we can suppose that $I=\left[-\frac{1}{2}, \frac{1}{2}\right]$, that $x_{0}=0$, and that $f(0)=0$. Consider the auxiliary function $g(x):=\frac{f(x)}{e^{2 \pi i x}-1}$ and note

$$
\left|\frac{f(x)}{e^{2 \pi i x}-1}\right|=\left|\frac{f(x)}{x} \frac{x}{e^{2 \pi i x}-1}\right| \leq A \cdot\left|\frac{x}{e^{2 \pi i x}-1}\right|
$$

Also, $\left|\frac{e^{2 \pi i x}-1}{x}\right| \geq 4 \Rightarrow\left|\frac{x}{e^{2 \pi i x}-1}\right| \leq \frac{1}{4}$

## Proof of Pointwise Fourier Series Convergence

## Proof (Cont'd)

Now note that $\hat{f}(k)=\mathcal{F}\left(g \cdot\left(e^{2 \pi i x}-1\right)\right)(k)=\hat{g}(k-1)-\hat{g}(k)$ which expresses $\hat{f}$, so

$$
\begin{equation*}
S_{m, n}(0)=\sum_{k=-m}^{n} \hat{f}(k) e^{2 \pi i k(0)}=\hat{g}(-m-1)-\hat{g}(n) \tag{3}
\end{equation*}
$$

which converges to $0-0=0=f(0)$ by the Riemann-Lebesgue Lemma applied to $g$.

## Contact Information

# Scott Beaver - Western Oregon University 

beavers@wou.edu
www.wou.edu/~beavers

