The Fourier Transform, $L^2(\mathbb{R})$, and the Riemann-Lebesgue Lemma

Scott Beaver - Western Oregon University

Pacific Northwest Section Meeting of the MAA

Saturday, April 10, 2010

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Fourier Transform on $L^{1}(\mathbb{R})$

$$\mathcal{F}(f)(\omega) = \hat{f}(\omega) := \int_{\mathbb{R}} f(x) e^{-2\pi i \omega x} \, dx \tag{1}$$

$$\mathcal{F}^{-1}(g)(x) = \check{g}(x) := \int_{\mathbb{R}} g(\omega) e^{2\pi i \omega x} \, d\omega \tag{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

These are valid wherever the integrals are defined, for example if $f\in L^1(\mathbb{R})$

$$C_{\mathbf{o}}(\mathbb{R})$$
 and \mathcal{S}

Definition

 $C_0(\mathbb{R})$ is the set of continuous functions with a horizontal asymptote at f=0 as $|x|~\to~\infty$

Definition

The Schwartz Space S is defined as the space of C^{∞} functions on \mathbb{R} which, along with all of their derivatives, decay faster than any rational function.

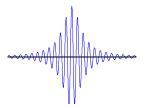
Theorems

 $\mathcal{S} \stackrel{d}{\hookrightarrow} L^1(\mathbb{R}); \ C_0(\mathbb{R}) \subset L^\infty(\mathbb{R}); \ \mathcal{F} : \mathcal{S} \ \rightarrow \ \mathcal{S} \ \text{is an isomorphism.}$

The Riemann-Lebesgue Lemma

Theorem

 $f \in L^1(\mathbb{R}) \Rightarrow \hat{f} \in C_0(\mathbb{R})$



・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The integral can be expected to be vanishingly small as the frequency increases without bound

Proof of RLL (after Nachtergaele)

Proof

By density, choose (g_n) from S converging to f in $L^1(\mathbb{R})$; then (\hat{g}_n) is (uniformly) Cauchy:

$$\begin{aligned} |\hat{g}_n(\omega) - \hat{g}_m(\omega)| &= \left| \int_{\mathbb{R}} (g_n(x) - g_m(x)) e^{-2\pi i \omega x} \, dx \right| \\ &\leq \int_{\mathbb{R}} |g_n(x) - g_m(x))| \, dx \\ &= \|g_n - g_m\|_1 \end{aligned}$$

Since $S \subset C_0(\mathbb{R})$ which is complete under the sup norm, there exists a function $h \in C_0(\mathbb{R})$ to which (\hat{g}_n) converges uniformly

Proof (Cont'd)

Finally, $h = \hat{f}$ since $\forall \ \omega \in \mathbb{R}$,

$$\begin{aligned} \left| h(\omega) - \hat{f}(\omega) \right| &= \lim_{n \to \infty} \left| \hat{g}_n(\omega) - \hat{f}(\omega) \right| \\ &= \lim_{n \to \infty} \left| \int_{\mathbb{R}} (g_n(x) - f(x)) e^{-2\pi i \omega x} \, dx \right| \\ &\leq \lim_{n \to \infty} \int_{\mathbb{R}} |g_n(x) - f(x)| \, dx = 0 \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Fourier Transform on $L^2(\mathbb{R})$

For $f \in L^2(\mathbb{R})$, we cannot in general define \hat{f} by Equation (1).

Theorem

(Plancheral's Theorem) $f \in L^2(\mathbb{R}) \Rightarrow ||\hat{f}||_2 = ||f||_2$.

Now $(L^1 \cap L^2)(\mathbb{R}) \stackrel{d}{\hookrightarrow} L^2(\mathbb{R})$, so we can choose a sequence (f_n) in $(L^1 \cap L^2)(\mathbb{R})$ which converges to f in the 2-norm

(日) (伊) (日) (日) (日) (0) (0)

The Fourier Transform on $L^2(\mathbb{R})$

By Plancheral's Theorem, $||f_n - f_m||_2 = ||\hat{f}_n - \hat{f}_m||_2$, so (\hat{f}_n) is Cauchy in $L^2(\mathbb{R})$, hence converges.

We now define
$$\hat{f} := \lim_{n \to \infty} \hat{f}_n$$
.

The inverse Fourier transform \mathcal{F}^{-1} is then defined as the Hilbert space adjoint \mathcal{F}^* of \mathcal{F} (but not necessarily as a pointwise formula)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Fourier Inversion

First note that (by RLL) $f \in L^1(\mathbb{R}) \Rightarrow \check{f} \in C_0(\mathbb{R})$

Theorem

If
$$f, \ \hat{f} \in L^1(\mathbb{R})$$
, then $f(x) = \int_{\mathbb{R}} \hat{f}(\omega) e^{2\pi i \omega x} \, d\omega$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

So if $f, \hat{f} \in L^1(\mathbb{R})$, then $f, \hat{f} \in C_0(\mathbb{R})$

Useful Sufficient Conditions for $(\mathcal{F}^{-1} \circ \mathcal{F})(f) = f$

In this case we have $f, \hat{f} \in L^1(\mathbb{R}) \cap C_0(\mathbb{R})$, and splitting \mathbb{R} into complementary sets for which $f(\text{resp.}\hat{f}) \geq 1$ or f < 1 yields that

$$f,\,\hat{f}\in L^1(\mathbb{R})\ \Rightarrow\ f,\,\hat{f}\in \left(L^2\cap C_0\right)(\mathbb{R})\ \Rightarrow\ f,\,\hat{f}\in L^1(\mathbb{R})$$

So on a significant subset of $L^2(\mathbb{R}), \ \mathcal{F}^{-1}\circ\mathcal{F}=\mathcal{I}$

This set includes e^{-x^2} , $\operatorname{sinc}^2(x)$, which are formulaic, and many others which are not

The Chernoff-Fourier Convergence Theorem

(From Amer. Math Monthly (1980), 399-400)

Theorem

Let f be absolutely integrable on an interval I and suppose f is Lipschitz on I with constant A. Then the (asymmetric) partial sums

$$S_{m,n}(x_0) := \sum_{k=-m}^n \hat{f}(k) e^{\frac{2\pi i k x}{\ell(I)}}$$

ション ふゆ くり くり くし くし

converge to $f(x_0)$ as $m, n \rightarrow +\infty$.

Proof of Pointwise Fourier Series Convergence

Proof

WLOG we can suppose that $I = \left[-\frac{1}{2}, \frac{1}{2}\right]$, that $x_0 = 0$, and that f(0) = 0. Consider the auxiliary function $g(x) := \frac{f(x)}{e^{2\pi i x} - 1}$ and note

$$\left|\frac{f(x)}{e^{2\pi i x} - 1}\right| = \left|\frac{f(x)}{x}\frac{x}{e^{2\pi i x} - 1}\right| \le A \cdot \left|\frac{x}{e^{2\pi i x} - 1}\right|$$

Also,
$$\left|\frac{e^{2\pi i x} - 1}{x}\right| \ge 4 \Rightarrow \left|\frac{x}{e^{2\pi i x} - 1}\right| \le \frac{1}{4}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Proof of Pointwise Fourier Series Convergence

Proof (Cont'd)

Now note that $\hat{f}(k) = \mathcal{F}(g \cdot (e^{2\pi i x} - 1))(k) = \hat{g}(k - 1) - \hat{g}(k)$ which expresses \hat{f} , so

$$S_{m,n}(0) = \sum_{k=-m}^{n} \hat{f}(k) e^{2\pi i k(0)} = \hat{g}(-m-1) - \hat{g}(n)$$
 (3)

which converges to 0 - 0 = 0 = f(0) by the Riemann-Lebesgue Lemma applied to g.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

Contact Information

Scott Beaver - Western Oregon University

beavers@wou.edu

www.wou.edu/~beavers

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?